

Report Number BTC **13236A**

ACOUSTIC TEST REPORT COVERING A SERIES OF TESTS TO BS EN ISO 140 – 3: 1995 ON VARIOUS TIMBER JOIST FLOORS INCORPORATING A COMBINATION OF DIFFERENT JOISTS AND WALKING SURFACES, AND WITH A CEILING OF 15mm GYPROC WALLBOARD.

Test Date: 27th-29th January 2004

www.btconline.co.uk

Customer: Mitek Industries Limited. Mitek House Grazebrook Industrial Park Peartree Lane Dudley DY2 0XW

Customer: Mitek Industries Limited.

BTC 13236A: Page 1 of 31

ACOUSTIC TEST REPORT COVERING A SERIES OF TESTS TO BS EN ISO 140 - 3: 1995 AND BS EN ISO 140 - 6: 1998, ON VARIOUS TIMBER JOIST FLOORS INCORPORATING A COMBINATION OF DIFFERENT JOISTS AND WALKING SURFACES, AND WITH A CEILING OF 15mm GYPROC WALLBOARD.

TABLE OF CONTENTS

FOREWORD	4
REPORT AUTHORISATION	
TEST CONSTRUCTION	
BTC 13236A	
BTC 13247A	5
BTC 13248A	6
BTC 13249A	7
BTC 13250A	7
BTC 13251A	8
BTC 13252A	9
BTC 13253A	
TEST MATERIALS	11
Plasterboard	11
Chipboard	11
Plywood	11
Fasteners	11
Insulation	12
TEST PROCEDURE	12
TEST RESULTS	12
LIMITATIONS	13
APPENDIX A – TEST DATA	14
BTC 13236A	14

BTC 13247A	16
BTC 13248A	18
BTC 13249A	20
BTC 13250A	22
BTC 13251A	24
BTC 13252A	26
BTC 13253A	28
APPENDIX B – LABORATORY DETAILS	30

Customer: Mitek Industries Limited.

BTC 13236A: Page 3 of 31

FOREWORD

This test report details sound insulation tests conducted on various timber joist floors incorporating a combination of different joists and walking surfaces, and with a ceiling of 15mm Gyproc Wallboard. The test sponsor was Mitek Industries Limited.

The test specimen was installed by Alltone. The construction of the specimen took place between the 26th and the 29th January 2004. The Building Test Centre played no role in the design or selection of the materials comprising the test specimen.

REPORT AUTHORISATION

Report Author \$0 Chambers **Alexandra Chambers**

B.Eng. Technologist

Authorised by Eur Ing. Paul Howard BSc. (Hons.), C.Eng., MIOA *Head of Laboratory*

The Building Test Centre will not discuss the content of this report without written permission from the test sponsor. The Building Test Centre retains ownership of the test report content but authorises the test sponsor to reproduce the report as necessary in its entirety only.

TEST CONSTRUCTION

BTC 13236A

240mm (deep) I-Joists were placed at 600mm centres directly on top of the ring beam of the test aperture and fixed using four x 60mm Gyproc drywall screws per joist. A ceiling consisting of 15mm (deep) Gyproc Wallboard was fixed to the joists at 300mm centres using 38mm Gyproc drywall timber screws. The walking surface comprising of 22mm tongue and groove moisture resistant chipboard was fixed to the joists at 600mm centres using 51mm Gyproc drywall timber screws. 100mm (thick) Isowool (1000) was placed within the joist cavity.

All board joints were staggered and taped. The perimeter was taped and sealant was applied around the perimeter on both sides of the separation.

Figure 1. Cross-section through partition.

<u>BTC 13247A</u>

240mm (deep) I-Joists were placed at 600mm centres directly on top of the ring beam of the test aperture and fixed using four x 60mm Gyproc drywall screws per joist. A ceiling consisting of 15mm (deep) Gyproc Wallboard was fixed to the joists at 300mm centres using 38mm Gyproc drywall timber screws. The walking surface comprising of 22mm tongue and groove moisture resistant chipboard was fixed to the joists at 600mm centres using 51mm Gyproc drywall timber screws.

All board joints were staggered and taped. The perimeter was taped and sealant was applied around the perimeter on both sides of the separation

Figure 2. Cross-section through partition.

BTC 13248A

253mm (deep) Posi-Joists were placed at 600mm centres directly on top of the ring beam of the test aperture and fixed using two x 60mm Gyproc drywall screws per joist. A ceiling consisting of 15mm (deep) Gyproc Wallboard was fixed to the joists at 300mm centres using 38mm Gyproc drywall timber screws. The walking surface comprising of 22mm tongue and groove moisture resistant chipboard was fixed to the joists at 600mm centres using 51mm Gyproc drywall timber screws. 100mm (thick) Isowool (1000) was placed within the joist cavity.

All board joints were staggered and taped. The perimeter was taped and sealant was applied around the perimeter on both sides of the separation

Customer: Mitek Industries Limited.

BTC 13236A: Page 6 of 31

BTC 13249A

253mm (deep) Posi-Joists were placed at 600mm centres directly on top of the ring beam of the test aperture and fixed using two x 60mm Gyproc drywall screws per joist. A ceiling consisting of 15mm (deep) Gyproc Wallboard was fixed to the joists at 300mm centres using 38mm Gyproc drywall timber screws. The walking surface comprising of 22mm tongue and groove moisture resistant chipboard was fixed to the joists at 600mm centres using 51mm Gyproc drywall timber screws.

All board joints were staggered and taped. The perimeter was taped and sealant was applied around the perimeter on both sides of the separation

Figure 4. Cross section through partition

<u>BTC 13250A</u>

253mm (deep) Posi-Joists were placed at 600mm centres directly on top of the ring beam of the test aperture and fixed using two x 60mm Gyproc drywall screws per joist. A ceiling consisting of 15mm (deep) Gyproc Wallboard was fixed to the joists at 300mm centres using 38mm Gyproc drywall timber screws. The walking surface comprising of 18mm tongue and groove plywood was fixed to the joists at 600mm centres using 51mm Gyproc drywall timber screws. 100mm (thick) Isowool (1000) was placed within the joist cavity.

All board joints were staggered and taped. The perimeter was taped and sealant was applied around the perimeter on both sides of the separation

Figure 5. Cross section through partition

BTC 13251A

253mm (deep) Posi-Joists were placed at 600mm centres directly on top of the ring beam of the test aperture and fixed using two x 60mm Gyproc drywall screws per joist. A ceiling consisting of 15mm (deep) Gyproc Wallboard was fixed to the joists at 300mm centres using 38mm Gyproc drywall timber screws. The walking surface comprising of 18mm tongue and groove plywood was fixed to the joists at 600mm centres using 51mm Gyproc drywall timber screws.

All board joints were staggered and taped. The perimeter was taped and sealant was applied around the perimeter on both sides of the separation

Figure 6. Cross section through partition

Customer: Mitek Industries Limited.

BTC 13236A: Page 8 of 31

BTC 13252A

223mm (deep) Posi-Joists were placed at 600mm centres directly on top of the ring beam of the test aperture and fixed using two x 60mm Gyproc drywall screws per joist. A ceiling consisting of 15mm (deep) Gyproc Wallboard was fixed to the joists at 300mm centres using 38mm Gyproc drywall timber screws. The walking surface comprising of 22mm tongue and groove moisture resistant chipboard was fixed to the joists at 600mm centres using 51mm Gyproc drywall timber screws. 100mm (thick) Isowool (1000) was placed within the joist cavity.

All board joints were staggered and taped. The perimeter was taped and sealant was applied around the perimeter on both sides of the separation

Figure 7. Cross-section through partition.

<u>BTC 13253A</u>

223mm (deep) Posi-Joists were placed at 600mm centres directly on top of the ring beam of the test aperture and fixed using two x 60mm Gyproc drywall screws per joist. A ceiling consisting of 15mm (deep) Gyproc Wallboard was fixed to the joists at 300mm centres using 38mm Gyproc drywall timber screws. The walking surface comprising of 22mm tongue and groove moisture resistant chipboard was fixed to the joists at 600mm centres using 51mm Gyproc drywall timber screws.

All board joints were staggered and taped. The perimeter was taped and sealant was applied around the perimeter on both sides of the separation

Figure 8. Cross-section through partition.

The descriptions of individual components making up the test specimen were provided by the customer and were checked for accuracy wherever possible.

TEST MATERIALS

Plasterboard

Nominally 2400mm (long) x 1200mm (wide) x 15mm (thick) Gyproc Wallboard manufactured by British Gypsum Limited.

Average thickness:	14.85 mm
Average surface density:	9.93 kg/m²
Board identification numbers:	16 309 3 05:05

Chipboard

Nominally 2400mm (long) x 1200mm (wide) x 22mm (thick) tongue and groove moisture resistant chipboard supplied by Mitek Industries Limited.

Average thickness: Average surface density: Board identification numbers: 22.01 mm 14.60 kg/m² Caber floor P5 29/09/03 02

<u>Plywood</u>

Nominally 2400mm (long) x 1200mm (wide) x 18mm (thick) tongue and groove plywood supplied by Mitek Industries Limited.

Average thickness:17.79 mmAverage surface density:8.33 kg/m²Board identification numbers:2:2002 2780707 1949

The surface density was calculated using the actual weight and nominal size of a selection of the boards used in the test specimen. The board thickness is the mean thickness of a selection of the boards used in the test specimen.

Fasteners

- i) 38mm Gyproc Drywall Timber Screws
- ii) 51mm Gyproc Drywall Timber Screws
- iii) 60mm Gyproc Drywall Screws

All fasteners supplied by British Gypsum Limited.

Insulation

Isowool General Purpose Roll (1000) nominally 100mm thick supplied by British Gypsum - Isover Limited.

Actual density:

10.43 kg/m³.

Where measurements could not be taken then weight and dimensions were provided by the customer or the manufacturer e.g. from material labelling. Material information was recorded according to procedure MAT/1.

TEST PROCEDURE

The test specimens (3.45m x 3.45m) were constructed in a floor dividing two reverberant rooms of approximately 98m³ and 101m³. The accuracy of the test method conforms to BS EN 20140-2:1993, the test procedures used were 140/3 issue 5 (airborne). Broadband white noise was used to measure the level differences and broadband pink noise was used to measure the reverberation times. Third octave band pass filters were used in real time mode. See appendix B for further information.

TEST RESULTS

Test Code	Test Description	Weighted Airborne Sound Reduction Index R _w (C; Ctr)
V13236A	240mm I-Joists, 22mm Chipboard walking surface, 100mm insulation	42 (-1;-4)
V13247A	240mm I-Joists, 22mm Chipboard walking surface	41 (-1;-4)
V13248A	253mm Posi-Joists, 22mm Chipboard, 100mm insulation	44 (-2;-6)
V13249A	253mm Posi-Joists, 22mm Chipboard	43 (-2;-6)
V13250A	253mm Posi-Joists, 18mm Ply walking surface, 100mm insulation	41 (-2;-6)
V13251A	253mm Posi-Joists, 18mm Ply walking surface	39 (-1;-5)

	223mm Posi-Joists, 22mm Chipboard walking surface, 100mm insulation	44 (-2;-6)
V13253A	223mm Posi-Joists, 22mm Chipboard walking surface	42 (-1;-6)

For full data see pages 14 - 29.

Tests conducted in accordance with BS EN ISO 140-3: 1995 and rated in accordance with BS EN ISO 717-1: 1997.

LIMITATIONS

The results only relate to the behaviour of the element of construction under the particular conditions of test; they are not intended to be the sole criteria for assessing the potential acoustic performance of the element in use.

The specification and interpretation of test methods are the subject of ongoing development and refinement. Changes in associated legislation may also occur. For these reasons it is recommended that the relevance of test reports over 5 years old should be considered by the user. The laboratory that issued the report will be able to offer, on behalf of the legal owner, a review of the procedures adopted for a particular test to ensure that they are consistent with current practices, and if required may endorse the test report.

APPENDIX A – TEST DATA

<u>BTC 13236A</u>

LABOF	RATORY	AIRBORN	NE SOUN	ND IN	SULATI	ON TES	T - BS EN ISC	O 140-3:1	995	
Test Code	e: V132	36AA			Test Date:	27/01/0	04			
							Room T3	Room T4	1	
0	A O	9.99 m ²							Ŧ	
Specimer	n Area, S =	9.99 m			Room Volu		98 15.6	101 18.1		
						ure, deg.C: dity, %RH:	39.4	45.8		
						uity, /01/11.	55.4	45.0		
		Те	st Room T3	to Tes	t Room T4					R
Freq	Source	Rec. (uc)	Bgrnd	R	ec. (corr)	Rev.time	e Corr.	R	U.Dev.	1/1Oct
Hz	dB	dB	dB		dB	Sec	dB	dB	dB	dB
50	67.7	48.2	33.5		48.1	2.15	1.2	20.8		
63	67.8	53.8	31.3		53.8	2.31	1.5	15.5		17.8
80	74.8	55.6	25.5		55.6	1.50	-0.3	18.9		
100	85.7	59.6	29.5		59.6	1.12	-1.6	24.5		
125	90.7	57.9	20.6		57.9	0.79	-3.1	29.7		27.2
160	97.8	64.9	24.8		64.9	0.79	-3.1	29.8		
200	100.3	64.4	23.3		64.4	0.81	-3.0	32.9		
250	99.7	61.6	25.0		61.6	1.11	-1.6	36.5		34.7
315	98.8	62.6	25.0		62.6	1.35	-0.8	35.4	2.6	
400	98.3	59.3	23.2		59.3	1.27	-1.1	37.9	3.1	
500	96.9	54.8	20.1		54.8	1.22	-1.2	40.9	1.1	39.8
630	96.3	54.1	16.8		54.1	1.34	-0.8	41.4	1.6	
800	96.9	53.1	15.6		53.1	1.45	-0.5	43.3	0.7	
1 000	99.2	55.6	13.7		55.6	1.52	-0.3	43.3	1.7	43.4
1 250	100.8	57.2	11.6		57.2	1.64	0.1	43.7	2.3	
1 600	98.1	56.6	11.7		56.6	1.72	0.3	41.8	4.2	
2 000	100.7	59.6	13.0		59.6	1.74	0.3	41.4	4.6	41.7
2 500	101.2	59.6	8.4		59.6	1.74	0.3	41.9	4.1	
3 150	101.5	55.7	8.9		55.7	1.57	-0.1	45.7	0.3	
4 000	96.9	45.1	8.7		45.1	1.38	-0.7	51.1		49.3
5 000	94.4	33.0	8.8		33.0	1.27	-1.1	60.3		
6 300										
8 000										
10 000										
Single Fi	gure Rating	gs R	W	С	C	tr	Total U.	Dev., dB	26.3	
-	0 717-1: 19	-	В	dB		IB				1
	0 / 1/-1. 10		2	-1		4				
		4	-2	- 1	=(4				
				0						
		(10	00-5000)	0	-4	4				
Backgroun	d Corrected			-		_				
		(50)-3150)	-2	-6	8				
RT's > fact	or 1.5 apart		-			Г	est Procedure: 1	40/3/issue {	5	
Tested Serially[] Real Time[] (50-5000) -1 -8 Worksheet: 140_3_1.XLS										
ested Ser	ally[] Real	11me[] (50	1-5000)	-1	=(vorksheet: 140_3	_1.XLS		

BTC 13247A

LABORATORY AIRBORNE SOUND INSULATION TEST - BS EN ISO 140-3:1995

Test Code:

V13247AA

Test Date: 27/01/04

Specimen Area, S = 9.99 m^2

Room T3 Room T4 Room Volume, m³: 98 101 Temperature, deg.C: 15.2 15.9 Rel. Humidity, %RH: 32.7 45.3

			Test Room T3	B to Te	st Room						R
Freq	Source	Rec. (uc		F	Rec. (corr	r) I	Rev.time		R	U.Dev.	1/10ct
Hz	dB	dB	dB		dB		Sec	dB	dB	dB	dB
50	68.1	48.4	31.7		48.4		2.31	1.5	21.2		
63	67.2	51.6	30.3		51.6		2.41	1.7	17.3		17.6
80	74.6	57.6	22.7		57.6		1.22	-1.2	15.8		
100	85.6	61.3	23.7		61.3		1.05	-1.9	22.4		
125	90.9	58.9	20.0		58.9		1.14	-1.5	30.5		25.8
160	98.3	66.3	23.3		66.3		0.87	-2.7	29.3		
200	100.4	65.4	22.0		65.4		1.14	-1.5	33.5		
250	99.6	62.7	18.8		62.7		1.32	-0.9	36.0		34.5
315	98.7	63.5	19.6		63.5		1.30	-0.9	34.3	2.7	
400	98.3	60.9	17.6		60.9		1.16	-1.4	36.0	4.0	
500	97.0	55.7	15.0		55.7		1.33	-0.9	40.4	0.6	38.4
630	96.4	54.9	12.8		54.9		1.26	-1.1	40.4	1.6	
800	96.7	53.7	14.7		53.7		1.52	-0.3	42.7	0.3	
1 000	99.2	56.2	14.7		56.2		1.53	-0.2	42.8	1.2	42.9
1 250	100.8	57.8	13.7		57.8		1.65	0.1	43.1	1.9	
1 600	98.2	57.4	13.9		57.4		1.67	0.1	40.9	4.1	
2 000	100.7	60.4	12.2		60.4		1.67	0.1	40.4	4.6	40.7
2 500	101.1	60.3	13.8		60.3		1.60	0.0	40.8	4.2	
3 150	101.5	56.5	14.5		56.5		1.58	-0.1	44.9	0.1	
4 000	96.8	46.1	17.8		46.1		1.33	-0.9	49.8		48.3
5 000	94.1	35.7	13.4		35.7		1.22	-1.2	57.2		
6 300											
8 000											
10 000											
Single Fi	gure Rating	is	Rw	С		Ctr		Total U. D)ev., dB	25.3	
-	SO 717-1: 19	-	dB	dB		dB			, e , a _		
DO EN IO	0/1/-1:18	97									
			41	-1		-4					
			(100-5000)	0		-4					
			(50-3150)	-2		-8					
RT's > fact	or 1.5 apart		. ,				Т	est Procedure: 14	0/3/issue {	5	
Tested Ser	rially[] Real	Time[]	(50-5000)	-1		-8	v	Vorksheet: 140_3_	1.XLS		

BTC 13248A

Test Cod	<u>ه</u> .	80	· · · ·					•		-
V13248										
Test Date										
27/01/0										
21/01/0		70								╞
Freq.	R									
Hz	dB									
50	20.5	m ⁶⁰								
63	19.3	Вр							/	
80	15.7	ех, R								
100	20.3	Inde							X	
125	30.4	50 <u></u>						/	<u> </u>	╞
160	32.4	Sound Reduction Index, R, dB						<i> </i>		
200	34.7	Ipun								
250	35.1	So			1					
315	35.9	40			1					╞
400	37.8									
500	42.0			, ···						
630	42.8			1.						
800	45.7	30							-	F
1 000	47.3									
1 250	48.5									
1 600	45.7	20								
2 000	44.8	20	$\lambda / $							
2 500	44.0									
3 150	48.2									
4 000	53.1	10								
5 000	59.5		63 175	220	200				4 000 • 000	0000
6 300					Fr	equency, Hz	- 0	1 .	4 0	С
8 000										
10 000				- Curve of	reference v	alues (ISO	717-1)			
Deting	andia a fa		R _M		r) = 44	(_2'_	6) dB			
Rating acc BS EN IS	-	·1007		(0 ,011 . 5.2 dB at	-	(-4,-				
		. 1997								
Evaluation			C ₅₀₋₃₁₅₀ =	-3 dB	C ₅₀₋	₅₀₀₀ = -2 c	βB	C ₁₀₀₋₅₀₀₀ :	= -1 dB	
measurem an enginee		obtained by od:	C _{tr.50-3150}	= -11 dB	Ctr 5	₀₋₅₀₀₀ = -11	dB	C _{tr.100-500}	₀ 6 dB	
	0		0,00-0100		- u,J			a, 100-000		—

LABOF	RATORY	AIRBO	RNE SOUN	ND IN	SULAT	ION TES	ST - BS EN IS	O 140-3:1	995	
Test Cod	le: V132	248AA			Test Date	: 27/01	/04			
Specimer	n Area, S =	9.99	m²			lume, m ³ : ure, deg.C idity, %RH:		Room T4 101 16.7 39.3	4	
			Test Room T3	to Tes	st Room T4					R
Freq Hz	Source dB	Rec. (uc dB) Bgrnd dB	R	lec. (corr) dB	Rev.tim Sec	e Corr. dB	R dB	U.Dev. dB	1/1Oct dB
50 63 80	68.1 68.0 74.4	48.6 50.2 58.4	31.7 26.7 21.4		48.6 50.2 58.4	2.06 2.27 1.50	1.0 1.5 -0.3	20.5 19.3 15.7		18.0
100 125 160	84.7 90.9 98.1	62.6 58.9 63.9	21.8 18.9 19.9		62.6 58.9 63.9	1.08 1.13 1.08	-1.8 -1.6 -1.8	20.3 30.4 32.4	4.7	24.4
200 250 315	100.0 99.9 99.0	63.7 63.6 62.2	19.1 15.2 19.0		63.7 63.6 62.2	1.11 1.24 1.30	-1.6 -1.2 -0.9	34.7 35.1 35.9	1.9 4.1	35.2
400 500 630 800	98.0 96.7 96.2 96.8	59.3 53.7 52.4 50.9	17.0 13.7 10.4 12.8		59.3 53.7 52.4 50.9	1.31 1.29 1.29 1.54	-0.9 -1.0 -1.0 -0.2	37.8 42.0 42.8 45.7	5.2 2.0 2.2 0.3	40.3
1 000 1 250 1 600	99.3 100.7 98.1	50.9 51.9 52.6 52.7	12.0 9.6 9.9		50.9 51.9 52.6 52.7	1.54 1.58 1.79 1.74	-0.2 -0.1 0.4 0.3	43.7 47.3 48.5 45.7	2.3	47.0
2 000 2 500 3 150	100.6 101.0 101.4	56.1 57.2 53.0	8.8 7.6 8.0		56.1 57.2 53.0	1.72 1.70 1.55	0.3 0.2 -0.2	44.8 44.0 48.2	3.2 4.0	44.8
4 000 5 000 6 300 8 000 10 000	96.8 94.3	42.9 33.5	8.7 8.7		42.9 33.5	1.35 1.20	-0.8 -1.3	53.1 59.5		51.5
Single Figure Ratings BS EN ISO 717-1: 1997			Rw ^{dB} 44	C dB -2	C	Ctr dB 6	Total U.	Dev., dB	29.9	
			(100-5000)	-1		6				
			(50-3150)	-3	-′	11				
	tor 1.5 apart rially[]Real [·]	Time[]	(50-5000)	-2	_*	11	Test Procedure: 1 Worksheet: 140_3		5	

BTC 13249A

LABOF	RATORY	AIRBOR	NE SOUM	ND IN	SULATI	ON TES	ST - BS EN IS	O 140-3:1	995	
Test Cod	le: V132	249AA			Test Date:	28/01	/04			
Specime	n Area, S =	9.99 m	2		Room Volu Temperatu Rel. Humid	re, deg.C		Room T- 101 16.5 51.1	4	
		Те	est Room T3	to Tes	t Room T4					R
Freq Hz	Source dB	Rec. (uc) dB	Bgrnd dB	R	ec. (corr) dB	Rev.tim Sec	e Corr. dB	R dB	U.Dev. dB	1/1Oct dB
50 63 80	67.6 68.0 74.6	47.8 51.9 58.7	34.5 25.4 19.8		47.6 51.9 58.7	2.02 2.35 1.48	1.0 1.6 -0.4	21.0 17.7 15.5		17.5
100 125 160	85.9 91.5 98.3	62.6 60.3 66.1	20.6 18.9 25.2		62.6 60.3 66.1	1.09 0.98 0.98	-1.7 -2.2 -2.2	21.6 29.0 30.0	2.4	25.1
200 250 315	100.7 100.0 99.0	67.0 65.4 63.2	21.7 27.0 28.3		67.0 65.4 63.2	1.23 1.20 1.54	-1.2 -1.3 -0.2	32.5 33.3 35.6	0.5 2.7 3.4	33.6
400 500 630	98.4 96.8 96.6	60.1 54.7 52.9	26.1 20.7 17.5		60.1 54.7 52.9	1.47 1.33 1.32	-0.4 -0.9 -0.9	37.9 41.2 42.8	4.1 1.8 1.2	40.1
800 1 000 1 250	97.1 99.3 101.0	51.8 53.0 54.3	15.0 12.4 10.8		51.8 53.0 54.3	1.40 1.53 1.71	-0.6 -0.2 0.2	44.7 46.1 46.9	0.3 0.1	45.8
1 600 2 000 2 500	98.2 100.7 101.1	54.7 58.7 59.2	10.8 9.5 8.9		54.7 58.7 59.2	1.70 1.78 1.68	0.2 0.4 0.2	43.7 42.4 42.1	3.3 4.6 4.9	42.7
3 150 4 000 5 000 6 300	101.6 97.0 94.3	55.0 45.5 36.6	9.1 9.1 9.1		55.0 45.5 36.6	1.68 1.46 1.30	0.2 -0.4 -0.9	46.8 51.1 56.8	0.2	49.9
8 000 10 000										
Single Figure Ratings BS EN ISO 717-1: 1997			אין 18 13	C dB -2	C d -€	В	Total U.	Dev., dB	29.5	
			+ - 00-5000)	-z -1	-c -6	-				
Backgrour	nd Corrected	(5	0-3150)	-3	-1	0				
	tor 1.5 apart			-2	-1	•	Test Procedure:		5	
Tested Serially[] Real Time[] (50-5000) -2 -						U	Worksheet: 140_3	3_1.XLS		

BTC 13250A

LABOF	RATORY	AIRBOI	RNE SOUN	ND IN	SULATI	ON TES	ST - BS EN IS	O 140-3:1	995	
Test Cod	e: V132	50AA			Test Date	: 28/01	/04			
Specimer	n Area, S =	9.99	m²		Room Vol Temperati Rel. Humi	ure, deg.C		Room T4 101 16.8 42.9	4	
			Test Room T3	8 to Tes	st Room T4	ļ				R
Freq Hz	Source dB	Rec. (uc dB	:) Bgrnd dB		ec. (corr) dB	Rev.tim Sec	dB	R dB	U.Dev. dB	1/1Oct dB
50 63 80	66.9 67.5 76.0	48.1 50.9 59.5	31.0 25.9 19.6		48.1 50.9 59.5	2.19 2.27 3.03	1.3 1.5 2.7	20.1 18.1 19.2		19.1
100 125 160	86.0 91.9 98.4	65.0 62.8 71.6	20.8 20.5 30.5		65.0 62.8 71.6	1.34 0.81 0.82	-0.8 -3.0 -3.0	20.2 26.1 23.8	1.8 4.2	22.7
200 250 315	100.5 100.0 99.1	68.6 65.2 64.7	20.5 19.9 30.8		68.6 65.2 64.7	1.06 1.28 1.20	-1.8 -1.0 -1.3	30.1 33.8 33.1	0.9 0.2 3.9	32.0
400 500 630	98.3 97.0 96.4	62.2 56.7 54.6	18.3 12.9 11.0		62.2 56.7 54.6	1.24 1.30 1.45	-1.2 -0.9 -0.5	34.9 39.4 41.3	5.1 1.6 0.7	37.7
800 1 000 1 250	96.9 99.4 100.9	53.2 53.4 53.4	12.1 11.7 9.6		53.2 53.4 53.4	1.45 1.70 1.80	-0.5 0.2 0.5	43.2 46.2 48.0		45.3
1 600 2 000 2 500	98.2 100.8 101.1	52.7 57.5 60.3	9.7 8.3 7.2		52.7 57.5 60.3	1.79 1.60 1.63	0.4 0.0 0.0	45.9 43.3 40.8	1.7 4.2	42.8
3 150 4 000 5 000 6 300	101.6 96.9 94.6	56.8 47.3 38.2	7.9 8.7 8.8		56.8 47.3 38.2	1.56 1.44 1.21	-0.2 -0.5 -1.3	44.6 49.1 55.1	0.4	47.8
8 000 10 000										
-	igure Rating SO 717-1: 19		Rw dB 41	C dB -2	c	Ctr IB 6	Total U.	Dev., dB	24.7	
			4 1 (100-5000)	-z -1		6				
			(50-3150)	-2	-	8				
	tor 1.5 apart rially[]Real]	Fime[]	(50-5000)	-1	-	8	Test Procedure: 7 Worksheet: 140_3		5	

BTC 13251A

LABORATORY AIRBORNE SOUND INSULATION TEST - BS EN ISO 140-3:1995

Test Code:

V13251AA

Test Date: 28/01/04

9.99 m² Specimen Area, S =

Room T3 Room T4 Room Volume, m³: 98 101 Temperature, deg.C: 18.9 16 Rel. Humidity, %RH: 35.2 35.5

			Test Room T3	8 to Te	st Room	T4						R
Freq	Source	Rec. (uc		F	Rec. (corr	·)	Rev.tim	е	Corr.	R	U.Dev.	1/1Oct
Hz	dB	dB	dB		dB		Sec		dB	dB	dB	dB
50	67.1	49.5	29.9		49.5		2.17		1.3	18.9		
63	67.1	52.3	27.3		52.3		2.30		1.5	16.3		17.0
80	75.6	60.1	21.5		60.1		2.00		0.9	16.4		
100	85.4	65.9	23.1		65.9		1.64		0.1	19.6	0.4	
125	91.4	63.5	20.3		63.5		1.35		-0.8	27.1		22.2
160	98.7	72.4	29.0		72.4		0.74		-3.4	22.9	3.1	
200	100.5	70.6	21.6		70.6		1.16		-1.4	28.5	0.5	
250	99.8	66.1	21.4		66.1		1.26		-1.1	32.6		30.6
315	99.1	66.2	31.1		66.2		1.33		-0.9	32.0	3.0	
400	98.2	63.5	18.5		63.5		1.24		-1.2	33.5	4.5	
500	96.6	58.0	14.6		58.0		1.28		-1.0	37.6	1.4	36.1
630	96.4	55.9	11.2		55.9		1.30		-0.9	39.6	0.4	
800	96.9	55.0	12.5		55.0		1.49		-0.4	41.5		
1 000	99.2	55.1	12.0		55.1		1.62		0.0	44.1		43.4
1 250	100.9	55.6	9.4		55.6		1.68		0.2	45.5		
1 600	98.1	55.1	9.6		55.1		1.69		0.2	43.2		
2 000	100.8	61.2	8.4		61.2		1.68		0.2	39.8	3.2	39.1
2 500	101.1	64.4	7.3		64.4		1.57		-0.1	36.6	6.4	
3 150	101.5	61.1	8.3		61.1		1.54		-0.2	40.2	2.8	
4 000	96.8	51.1	8.8		51.1		1.37		-0.7	45.0		43.5
5 000	94.4	40.8	8.9		40.8		1.26		-1.1	52.5		
6 300												
8 000												
10 000												
Single Fi	gure Rating	ne	Rw	С		Ctr			Total II	Dev., dB	25.7	
-	-	-								. Dev., uD	20.7	
BS EN IS	SO 717-1: 19	997	dB	dB		dB						
			39	-1		-5						
			(100-5000)	-1		-5						
			(50-3150)	-2		-8						
RT's > fact	or 1.5 apart					-	ſ	Test	Procedure:	140/3/issue	5	
RT's > factor 1.5 apart Test Procedure: 140/3/issue 5 Tested Serially[] Real Time[] (50-5000) -1 -8 Worksheet: 140_3_1.XLS												
			. ,							_		

BTC 13252A

LABOF	RATORY	AIRBOF	RNE SOUN	ND IN	ISULATI	ON TES	ST - BS EN IS	O 140-3:1	995					
Test Cod	le: V132	252AA			Test Date:	29/01	/04							
Specime	n Area, S =	9.99 r	m²		Room Volu Temperatu Rel. Humic	ire, deg.C		Room T4 101 15.8 42.8	4					
		-	Test Room T3	8 to Tes	st Room T4					R				
Freq Hz	Source dB	Rec. (uc) dB) Bgrnd dB	R	lec. (corr) dB	Rev.tim Sec	ie Corr. dB	R dB	U.Dev. dB	1/1Oct dB				
50 63 80	67.3 66.6 75.4	48.7 50.2 58.4	33.7 27.8 21.9		48.6 50.2 58.4	2.15 2.48 1.39	1.2 1.9 -0.7	19.9 18.3 16.3		17.9				
100 125 160	86.0 90.9 98.1	62.5 58.6 65.0	20.6 19.2 25.1		62.5 58.6 65.0	1.14 0.86 0.96	-1.5 -2.7 -2.3	22.0 29.6 30.8	3.0 0.2	25.6				
200 250 315	100.6 99.8 99.3	66.0 63.4 62.4	23.5 22.5 25.4		66.0 63.4 62.4	1.14 1.19 1.43	-1.5 -1.3 -0.5	33.1 35.1 36.4	0.9 1.9 3.6	34.7				
400 500 630	98.4 97.0 96.6	59.0 54.6 52.5	23.2 19.9 17.7		59.0 54.6 52.5	1.32 1.33 1.32	-0.9 -0.9 -0.9	38.5 41.5 43.2	4.5 2.5 1.8	40.6				
800 1 000 1 250 1 600	97.0 99.4 101.0 98.1	51.3 52.2 54.0 52.2	15.9 13.5 12.6 15.4		51.3 52.2 54.0 52.2	1.39 1.63 1.69 1.75	-0.7 0.0 0.2 0.3	45.0 47.2 47.2 46.2	1.0 0.8 1.8	46.3				
2 000 2 500 3 150	100.8 101.1 101.5	56.3 57.7 53.1	16.3 13.5 12.0		56.3 57.7 53.1	1.69 1.64 1.51	0.2 0.1 -0.3	44.7 43.5 48.1	3.3 4.5	44.7				
4 000 5 000 6 300 8 000 10 000	96.8 94.1	43.7 34.4	10.3 9.2		43.7 34.4	1.39 1.17	-0.7 -1.4	52.4 58.3		51.2				
Single Fi	igure Rating SO 717-1: 19		Rw dB	C dB		tr B	Total U. Dev., dB 29.8							
			44	-2	-(
Deel			(100-5000)	-1	-6	3								
-	nd Corrected		(50-3150)	-3	-1	_								
	tor 1.5 apart rially[]Real [·]	Time[1	(50-5000)	-2	-1		Test Procedure: 140/3/issue 5 Worksheet: 140_3_1.XLS							
rested Se	nany jreal	Inne[]	30-3000)	-4	- 1	v v	vvorksneet: 140_3	_1.ALS						

BTC 13253A

LABOF	RATORY	AIRBOR	NE SOUM	ND INS	ULATIO	N TES	T - BS EN IS	O 140-3:1	995	
Test Cod	e: V132	53AA		Te	est Date:	29/01/0	04			
Specimer	n Area, S =	9.99 m	2	R Ti R	Room T3 98 15.4 29.4	Room T4 101 15.7 41.8	4			
		Т	est Room T3	to Test I	Room T4					R
Freq Hz	Source dB	Rec. (uc) dB	Bgrnd dB	Rec	dB	Rev.time Sec	e Corr. dB	R dB	U.Dev. dB	1/1Oct dB
50 63 80	66.7 66.1 75.5	48.4 49.2 58.6	31.9 28.7 23.4	4	8.4 9.2 8.6	2.23 2.57 1.66	1.4 2.0 0.1	19.7 18.9 17.0		18.4
100 125 160	85.3 90.9 98.4	64.0 59.4 67.0	22.2 19.3 26.0	5 6	94.0 99.4 97.0	1.12 1.01 0.91	-1.6 -2.0 -2.5	19.7 29.5 28.9	3.3 0.1	23.6
200 250 315	100.7 99.6 99.2	67.9 65.4 63.8	22.0 17.5 19.4	6 6	67.9 65.4 63.8	1.33 1.33 1.59	-0.9 -0.9 -0.1	31.9 33.3 35.3	0.1 1.7 2.7	33.3
400 500 630 800	98.7 96.7 96.5 97.0	60.1 55.9 53.3 52.5	16.8 12.7 11.2 12.6	5 5	60.1 55.9 53.3 52.5	1.30 1.30 1.38 1.48	-0.9 -0.9 -0.7 -0.4	37.7 39.9 42.5 44.1	3.3 2.1 0.5	39.6
1 000 1 250 1 600	99.6 101.0 98.2	53.6 55.4 54.1	12.0 11.8 9.8 10.5	5 5	53.6 55.4 54.1	1.48 1.63 1.63 1.72	-0.4 0.0 0.0 0.3	44.1 46.0 45.6 44.4	0.4 1.6	45.2
2 000 2 500 3 150	100.7 101.1 101.5	58.3 59.2 54.9	9.5 8.6 10.5	5 5	58.3 59.2 54.9	1.62 1.67 1.41	0.0 0.1 -0.6	42.4 42.0 46.0	3.6 4.0	42.8
4 000 5 000 6 300 8 000 10 000	96.8 94.1	45.7 36.8	11.2 11.1	4	5.7 6.8	1.27 1.16	-1.1 -1.4	50.0 55.9		49.0
Single Fi	igure Rating 60 717-1: 19)97 (?w ів 12	С dB -1	Cti dB -6		Total U.	Dev., dB	23.4	
		(1	(100-5000) O		-6					
		(5	0-3150)	-2	-9	F		40/0/	-	
	tor 1.5 apart rially[]Real]	Time[] (5	0-5000)	-1	-9		est Procedure: 1 Vorksheet: 140_3		D	

APPENDIX B – LABORATORY DETAILS

An omnidirectional loudspeaker rotating at 1 rpm is used in the source room satisfying Annex C of BS EN ISO 140-3: 1995. The average sound pressure level in each 1/3 octave band is measured using a rotating microphone boom, positioned such that the minimum distance between the microphone and sound source is 1m and between microphone and room boundaries is 0.7m.

The rotating microphone has a sweep radius of at least 1m and is inclined in relation to the boundaries at an angle of at least 30° to the horizontal. The microphone has a traverse time of 32 seconds, and the sound pressure levels are averaged over 64 seconds, which is equivalent to two complete sweeps of the microphone boom. The equivalent absorption area of each room is determined by producing the arithmetic average of six reverberation times and applying this to the Sabine formula.

The laboratory limit for airborne sound insulation measurement due to flanking on a lightweight construction is:

Freq Hz	50	63	80	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000
R'max	26	31	31.9	37.5	49.3	53	55.3	61.9	67.5	70.9	73.8	75.5	76.1	82.6	85.5	86.8	86.5	87.1	87.9	89.9	89.2

The laboratory limit for airborne sound insulation measurement due to flanking on a concrete based construction is:

Frea Hz	50	63	80	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000
R'max	32.5	39	38.1	42.3	52.3	52.7	55.3	60.6	65.8	69.1	74.7	76.8	78.2	80.9	83.8	87.3	88.1	88.7	89.2	90.3	90.8

The figures below show flanking and isolation treatments in the test chamber.

Customer: Mitek Industries Limited.

BTC 13236A: Page 30 of 31

Figure 9. Chamber layout

Figure 10. Ring beam construction around test aperture

BTC 13236A: Page 31 of 31